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Abstract—Combining single particle results, average equations and thermodynamic considerations,
we propose a way to build the equations describing a suspension of rigid spherical particles in a carrier
fluid, with emphasis on inertia effects including virtual mass. The spatial fluctuations of the fluid
velocity field are depicted by two phenomenological functions f{a,) and g(a,) of the particle volume
fraction, and a third function h(a,) is necessary to describe the intensity of the particles internal
stress. It is shown that all inertia effects occurring in the relative translational motion can be derived
from the two functions fand g-h only. The conditions under which the above system of equations is
hyperbolic are determined and comparison is made with what is presently known about £, gand A in
the dilute limit.

1. INTRODUCTION

The forces acting on particles in a dispersed mixture mostly have a viscous origin, but
sometimes inertia forces do play a role. This is the case when flows are accelerated, either
due to nonstationarity (propagation of sound) or to spatial non-uniformities (flow through a
throat). Our knowledge of inertia effects is still fragmentary and we often reduce them to
virtual mass effects although other terms are intuitively felt to exist, for instance when one
adds ad hoc forces in the transfer of momentum between phases. The point is that the
complete knowledge we now have of the motion of a single particle in a ideal fluid (van Beek
1982 and Voinov 1973) is not sufficient to derive equations for a mixture, even a dilute one.
In this paper we suggest that, to get a reasonable set of equations, it is necessary to combine
single particle results, average equations and a general continuum approach of mixtures.

In section 2 the thermodynamic approach of a two-velocity mixture is presented. For the
sake of simplicity, we restrict ourselves to the case of spherical rigid particles dispersed in a
carrier fluid. In sections 3 and 4, we determine the consequences of the necessary
compatibility between the above thermodynamic equations and the average equations
commonly used in the multiphase flow community. In section 5, we transform our equations
so as to get an expression for the interphase momentum exchange that can be compared with
previous works. Section 6 deals with the problem of characteristics while a summary and a
discussion of our results are presented in the concluding section.

2. THERMODYNAMICS OF A SOLID-FLUID MIXTURE
WITH VIRTUAL MASS EFFECTS

2.1 The local and average thermodynamic relations for the fluid
The unit mass of a pure fluid phase is described by a Gibbs equation

" ~ - 1
d€f= deSf—pfd(:—o)y [1]
Ps
and a Gibbs-Duhem relation
1 L
s dp; = dit + 3,dT}, (2]
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where bfo ) Prs Tf, &, 3rand @, are respectively' the fluid mass per unit volume, pressure,
temperature, specific internal energy, specific entropy and chemical potential or free
enthalpy per unit mass, i.e.

~

- - ~ Pr
By =¢ — Tg3 + ik (3]

The thermodynamic relations [1] to [3] are valid at a local or “microscopic” level, that
is to say on a scale much smaller than the dimension of a particle. We are in fact interested in
average thermodynamic relations, valid in any volume of the mixture containing many
particles (the so-called mesoscale volume) but still being a “point” as compared to
macroscopic volumes. In general, all the fluid variables vary from point to point around the
particles but we want here to show that, for solid particles, the spatial inhomogeneities of 5%
and T, are negligible and that the average relations then take a rather simple form.

When a particle moves relatively to a fluid, the fluid develops on the particle a force
which deforms it and changes its volume. In turn, this volume change (if rapid enough) will
modify the mean particle temperature. However, if the particles are solid (or even liquid) the
volume change is so tiny that one never expects a noticeable difference with the mean
temperature of the surrounding fluid. In other words, provided there is no phase change and
that the particles are not bubbles, the inhomogeneities of Tj around the particles are
negligible. It must be stressed that this does not imply a constant fluid temperature: the
latter may vary from *“point” to “point” in the mixture but in any mesoscale volume the
mean fluid temperature stays always equal to the mean particle temperature. Moreover, 57
has negligible inhomogeneities around a particle because any relative velocity between the
fluid and the particle is always much lower that the velocity of sound in the fluid. Again, this
does not imply that 5] is constant throughout the mixture because we did not make any
assumption concerning the magnitude of the fluid velocity itself. '

If the inhomogeneities or spatial fluctuations of 57 and Tf are negligible, no product of
fluctuations appears in the relations [1] to [3]. The averaging procedure in a mesoscale
volume is then quite simple and gives:

d(ps&) = uydp, + T;d(pys) — prdey, (4]
Py + preg=priy + P8Iy (6]

The above formulas are written with the standard variables of the thermodynamics of
mixtures, where instead of pf° one rather uses the mass of fluid per unit volume of the mixture,
ie.

pr=aypyp, (7]

with a; the fluid volume fraction.

2.2 The thermodynamic relations for solid particles undergoing homogeneous
deformations

The local thermodynamic relations of a solid involve the local strain tensor. For a small
solid particle the strain is nearly constant all over the particle (homogeneous deformation)
and the trace of the strain tensor is associated with a volume change while the traceless part
is associated with a change of shape. For a nearly spherical particle the shape is conveniently
described by a traceless symmetric tensor C; (Frankel & Acrivos 1970) which is defined
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in figure 1. With the use of C;

;» the Gibbs equation for the unit mass of such a particle can be
written as

de, = T, ds, — p,d (%

£

o;
) - p—é dC; (8]

where all quantities have the same meaning as for the fluid except p, (the “particle
pressure”) which is in fact related to the trace of the particle stress tensor, and ¢7; which is the
traceless part of this tensor. Roughly speaking, p, is related to the Young modulus of the
particle and o7; to its shear modulus. All the quantities in [8] appear without tildes because
due to the assumption of homogeneous deformations, they are all constant throughout any
given particle.

The average of the above relation in a mesoscale volume containing many particles is
straightforward and leads to:

d(ose,) = usdp, + T, d(p,s,) — p, da, — a,03,dC;, (9]
where
ps = .05 [10]
and
a=1—a [11]

is the particle volume fraction. The average Gibbs-Duhem relation is found in a similar way
and one gets

a; dps = Ps d”x + PsSs dT: + as‘r;j dcija [12]
with
o Ps + P = Pshhs + p:s:Ts' [13]

According to what was said above concerning the temperature fluctuations, we must add to
the preceeding thermodynamic relations, the following condition on the average tempera-
tures:

T,=T.-T (14]

and we henceforth speak of T as the mixture temperature.

-
n
/’——\
~ <N
S \

Figure 1. Definition of Cy;: the distance to the sphere center of a point of the deformed surface in the
direction 7 is given by the series expansions: r(n) = ro (1 + C;m n; + - - -). When the symmetric
tensor C; is traceless, the volume of the deformed body is that of the sphere of radius r,.
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2.3 The kinetic energy of the mixture

Since the fluctuations of 5} and p° are negligible (due to the low relative velocities and
homogeneous deformations respectively) the velocity fluctuations only can play a role in the
kinetic energy. In a mixture with two components moving at two different mean velocities V.
and VI the kinetic energy per unit volume is thus:

Uiia = ' p:(V7 + ((A0)2),) + Yap, (V] + ((Au)*)) [15]

where Av, is the velocity fluctuation around the mean value V, and where ( }, stands for the
average value in the pure k& phase.

In this paper we shall suppose that the particles are rigid this means that we neglect the
deformation and velocity of deformation resulting from the relative flow. We also suppose
that the particle motion is not too chaotic. These two assumptions imply that we neglect the
spatial and time fluctuations of the particles velocity field, hence

((Av,)*), = 0. [16]

As to the fluid, we suppose that it is not turbulent but we notice that the fluid velocity
field is inhomogeneous all around the particles. For rigid particles, these spatial velocity
fluctuations are a consequence of the mean relative velocity

W=V -V, [17]
and they depend on the particle concentration. For spherical particles, isotropy leads to:
<(Auf)2)f=f(as)W2’ (18]

where the function f («,) is unknown except in the dilute limit where:
lirr‘l)f (a)) = a,/2 [19]

to agree with single particle results (e.g. Landau & Lifshitz 1971). As a matter of fact, the
ratio f (a,) /a, gives an adimensional measure of the variation of the virtual (or added) mass
with the particle concentration. If the particles, although rigid, slightly depart from a
spherical shape, [18] must be amended into (Batchelor 1967):

((Av)?), = f(a)W? — h(a)C;WW; [20]

where C;; is the shape tensor introduced in the preceding section while A(a,) is a second
phenomenological function which, as we shall later see, is linked to the stress inside the
particles.

With [16] and [20], the kinetic energy [15] is finally rewritten as

Un = 2 0V + Y 0, W, W, [21]
with the following classical definitions:

p=ps+pf9
oV =poV, + 0¥,

and the introduction of the inertia tensor of the relative motion

Py = p*aij — Pr h(as)Cij» [22]
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where

p* - p; Bt oS (). (23]

For an assembly of rigid spheres, [21] merely becomes
Usin = 'h pV? + Y p* w2, [24]

2.4 The Gibbs equation for the mixture

If for simplicity we neglect any energy or entropy of “mixing” (thus disregarding surface
tension, brownian motion and direct interaction between the particles, cf paragraph 6) then
the internal energy and entropy of the mixture are:

Us = o, + pres [25]
and
S =ps; + pr5y. [26]
We are mainly concerned with the total energy
U=U, + Uy, [27]

and we want to establish the Gibbs equation of the mixture, i.e. the differential form of Uas a
function of the state variables. Upon inspection of [4], [9], [11] and [21], one sees that the
state variables for a mixture of deformable particles in a fluid are:

Ps; pf’ Sv pI/i’ piju/j’ o and CU'

However if we restrict ourselves to the idealized case of perfectly rigid particles, the

tensor C;;, being a constant, is no longer a state variable and o, being equal to p, up to a

constant (see [10]) is no longer an independent variable. We thus conclude that the
approximation of rigid particles involves the fulfilment of two constraints:

aUu au

- — =0. 28
2e, 0 and ac, 0 [28]

For rigid and spherical particles, the explicit form of these constraints is obtained by
calculating first the complete derivatives [28], and then setting C; = 0. We thus get the
particle stresses:

W df
Ps=DPr— _2—pfd_as, [29]
and
W2
a:‘r;j = pfh(a:) (l’V,I’VI - —3— 6ij>- [30]

If we compare with the single particle result for the internal stress (Biesheuvel & van
Wijngaarden 1984) we deduce:

. 9
31_13(1) h(a,) = 50 % [31]
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Moreover the single particle result for the particle pressure (van Wijngaarden 1976a) is
indeed recovered with [29] and [19].

With the constraints [28], the Gibbs equation for a mixture of rigid and spherical
particles is then:

dU = p*dp, + prdp, + TdS + W . dp*W + V - dpV, [32]
with
V:  W?ap*
Fmpgy — — — —— (k= .
ME=pe =5 = o (k=fors) [33]

It differs from the usual Gibbs equation (De Groot & Mazur, 1969) by the terms involving
the relative velocity, and above all through the appearance of the invariant (or internal)
momentum p*W = QU/AW as a new state variable. That this momentum is a more
convenient variable than W itself was already suggested in Landau & Lifshitz (1971) from a
study of the motion of a single particle in a uniform flow; this result was later extended to
more general flows by Lhuillier (1982). One may notice that it was necessary to deal for a
while with deformable particles (in [9] for instance) to get the relevant constraints [29] and
[30] for rigid particles. It is also possible to recover the above constraints with arguments of
virtual deformation.

2.5 The equations of motion and the entropy production

A thermodynamic state of the mixture being defined by the knowledge of p,, p,, U, oV
and p*W, to describe the evolution in time of a state we must have equations for the evolution
of each variable.

Galilean invariance is satisfied with:

dp,

—67+”v‘.(p,17+7)=o [34]
3ﬂf = — -
5tV eV -D=-0 [35]
oV o ==
T+ V-V + W) - 5F [36]
Wy = Ty
WU = = — - I
—67+v.(UV+V-1r+‘Q’)=pg-V [37]
a*W —_ — — e
"a! +V.@*WV +R)=F (38]

and although a, is no more a state variable in the case of rigid particles it will prove useful to
know its evolution equation deduced from [10] and [34]:

—

I O
+v-(a,V+—,,)=o. [39]

5

da,
ot
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In the above equation,_fis the mass flux, 7 the momentum ﬂux,athe heat flux, R the flux of
the internal momentum and F its source. Their explicit expressions are yet unknown.

From the Gibbs equation [32] and the evolution equations [34] to [38] it is not too
difficult to deduce the entropy balance equation

aS —

— + V. (SV =

at+ SV +5)
1 — — - . - — = ——
——[§-VT+7T -Vt —put)+ W -F+ F-pl):VV+R:VV], [40]

where the entropy flux S is related to the other fluxes by
TS =0 — (ut - u)J - W R, [41]
and the scalar p, defined as the sum

p=-U+pu} +pu¥ + TS + p*W? + pV?,

will now be proved to be the mean pressure of the mixture. Using [6], [13], [24], and [33] we
can rewrite p as:

p= :ps+afpf+—p —Ps5 |

wi ., dp* dp*
L
2 dps dp,

But any acceptable expression for p* must be extensive in p, and p;, hence the requirement

dp* + ap*
=pr7— + P .
T op, " 9p,

p*(pn pfa as) [42]

Such a condition is obviously satisfied by [23] and the pressure p is thus nothing but the
mean pressure which, with [29], becomes

W df

P=aps+ appy=py— — by " (43]

in agreement with what was found by van Wijngaarden (1976a) in the dilute limit.

At this point, the usual procedure would be to deduce from [40] and the methods of
irreversible thermodynamics, the most general expressions of the fluxes S,J, F,7rand R
compatible with a positive entropy production. Each of these fluxes is in fact made of a
reversible and a irreversible part. For the irreversible part, no doubt that irreversible
thermodynamics is a powerful tool. But to determine the non-dissipative contributions (the
ones which do not play a role in the entropy production) the problem is left open because we
have a lot of different possibilities and physical arguments are necessary if one does not want
to cover pages with general but tremendous formulas. In fact to solve that problem of the
non-dissipative parts of the fluxes we propose in this paper to compare the “thermodynamic”
equations [34] to [38] with the corresponding average equations that can be found in
standard text-books (Ishii 1975) and articles (Nigmatulin 1979, Drew 1983). This proce-
dure already proved helpful in the case of a solution of deformable polymers (Lhuillier
1983).
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3. THE NON-DISSIPATIVE PART (OR W—DEPENDENCE) OF THE FLUXES

3.1 The mass flux
If we compare [34] and [35] to the standard form of the average equation of mass
conservation

we deduce that:
J="=W. [44]

With this result in mind, [38] is somewhat reminiscent of the extended thermodynamics
scheme (Miiller 1984) where the flux J is considered as a state variable and obeys an
equation of motion instead of being merely proportional to the gradient of chemical potential
as in classical thermodynamics. And in fact, if it were not for the added mass term
represented by f(a,) in [23] we would have J = p* W and [38] would be exactly the equation
written in the frame of extended thermodynamics.

3.2 The entropy flux
Since the entropy of the particles (resp. fluid) is convected with the particles (resp. fluid)
velocity, the total entropy flux must be written as:

oSV + ppseVy+ 50

Comparing with [40], we deduce that we must write:

Sl _syWa+w [45]
o

Obviously the above result is to be modified when some entropy of mixing is present (due for
instance to a temperature-dependent surface tension, or to a configuration entropy of the
particles in the fluid, cf section 6). In that case one must determine the velocity of convection
of this extra entropy and it is this new contribution to S which is at the origin of a Soret effect
in the mixture (cf Lhuillier (1983) for an example concerning polymer solutions).

3.3 The momentum flux
The general form of the average momentum flux (Ishii 1975) is for a mixture of fluid and
solid particles

oV ¥, + oV, + o (BuAY), + p(BUAL,), + o] + a(pd +07) + T,

where the elastic stress inside the particles has been taken into account and T represents the
average viscous contribution. Remembering what was said in the section on kinetic energy
about the rigidity of the particles and their not too chaotic motion, we have (cf [16])

{(Av,Avu,), ~ 0.

As to the “Reynolds stress” associated with the spatial fluctuations of the fluid velocity we

must propose a general expression compatible with [18], and this is achieved by: ~

W

DA
3

(Bv; Av))s = f (o) WW + g(a,)( W_W) - [46]
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where g(a,) is a third (and last !) unknown function of the particle concentration.
Comparison with dilute solution results (Nigmatulin 1978) leads to:

lim g(a,) = 2 (47]

o 20%

with the important consequence that the dilute limits of both g and A are equal (cf [31]). If
we now remember the definition [43] of the mean pressure and the expression [30] for the
particle stress, we see that the average momentum flux is finally

- J— N J— |/ —
pl +pVVi+ o VV+ p fWW + p (g — h) (——3—1 - WW) + T,
and comparing with [36] we conclude that we must write 7 as
- —_— W? e o\ =
?=p1+p*WW+pf(g—h)(—3—l—WW)+T [48]

So, two scalar functions linked to the velocity fluctuations and a third one linked to the
particle stress appear in the expression of the momentum flux.

3.4 The energy flux
The total average energy flux (Ishii 1975) can be written as

o (02 s+ By + o)) Ty + (006 + o + 1h p201)T, + 5 - T.),

+ viscous contribution + heat conductivity contribution.

In conformity we our previous hypothesis we neglect all fluctuations inside the particles
and in their translational motion but we take into account the velocity and pressure
fluctuations inside the fluid through the use of the result [A.4] established in appendix I.
We rearrange the terms so as to present the total energy flux like in [37], and we then find
that we must write the flux Q as:

= PP ps 1 pro 1 1
0= ’ W€s+-§+§(Vx_V)z—ef—p—?_E(Vf_V)z"E(AU})[

+ Ep—IW - [a0® + p{AvAvs) /| + 7

Taking into account the thermodynamic relations [6] and [13], the expressions [46] and
[30] for the velocity fluctuations and the particle stress, and finally the definition [33] of uf
we can rewrite the above expression as:

oy PrPs =
0= =2 W [wf = uf + TG = 5]

_ —p—— Pl G —
+W.p*’ip—”‘ww+%(g—h)(—3—1_ww)+zf. [49]

3.5 The internal momentum flux
The internal momentum flux is not independent of the above-mentioned fluxes since we
have the thermodynamic relation [41] which links R to S, O and J. The result [49] for the
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heat flux @ is quite compatible with such a relation provided Ris given by:

- Cp— P W e e\
R=p*f—piWW+%f(g~h)(—3—1-WW)+r (50]

and the dissipative part of the fluxes are linked by the relation

—

T=T5+W.F [51]

We now have reached our goal which was to distinguish in the various fluxes, the dissipative
and the non-dissipative (or W-dependent) parts. The results [44] and [45] are rather evident.
The result [48] supposes a regular or “laminar” flow of particles in the fluid and results [49]
and [50] rest on the special pressure-velocity correlation [A.4] which was established for
ideal fluids.

4. THE INTERNAL MOMENTUM FORCE

With the expressions [44], [45], [48] and [50] for the fluxes the entropy balance law
[40] is transformed into

a f— o — 1 = — o — — —
5§+V-(SV+S)=—7,[E'-VT+F-W+ VW 4+ T:VV

PfPs PrPs

W-V(uf—uf)+p*W:.-VT

(s, -—s,)W VT +

w? _— p
+p*pfp WWVW+pf(g h)(—I—WW):(VV,—WV;f)J.

In the entropy production (right-hand side of the above equation) all the terms coming from
the W-dependence of the fluxes have an odd parity in a time-reversal. We conclude that
these terms must disappear since an entropy production being irreversible, cannot change in
a time-geversal. There is only one way to fulfill this requirement and this amounts to write F
in the form

o 1 1 o pps [Bp*  Bp*\ = o
F-7_ P =%p, - =¥ )——f—‘(————(W.V)W
7 p \ot BT P T T G, T B,
W _. _[op* * .
—”f”‘—W.v(@——ap)—p*(W.V)V
p 2 dp;  9p;

[52]
—p*”fp S(W )W+ pyg — h)(——I—W)-—V'%f

e s s Ww_. .
+o(g-BH((W-V)V) -~ (—3— v. V,) + terms orthogonal to .

To get that expression we used the following identity:
1
pe

— 1 o
Vps - '—onf,

v(“s - uf) + (s.r - Sf)_V’T'__
Pr

which was derived from [5] and [12]. It must be noticed that there is a certain arbitrariness
in writing [52] since this expression is only defined up to terms orthogonal to #. In fact we
chose the form which is the most convenient for the subsequent calculations. With that
expression the entropy balance law merely becomes

%§+v (SV+S)=——-[s VT+F-W+7:VW 4+ T:VP) (53]
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and the expressions of 5, f, 7 and T follow from the usual methods of irreversible
thermodynamics (De Groot & Mazur 1969). In the dissipative entropy flux s°will appear the
thermal conductivity of the mixture, and f will represent some generalization of the Stokes’s
force to arbitrary concentrations of particles. No dissipative coupling is expected between 1
and 5" since W and VT behave differently in a time-reversal (however, a nondissipative
coupling was yet taken into account in [45] and [52] through the W-dependence of Sand V T
dependence of F). A more original feature is perhaps the coupling between 7 and T with
which we may expect to derive some kind of generalized Faxen'’s force from V - 7 (Lhuillier
1983). Moreover it is possible for 7 to have an antisymmetric part proportional to V x W.
Lastly one sees that the above entropy production no longer involves the usual gradient of
chemical potential (compare with [40]). This is because the mass flux is proportional to W
and there is an equation of evolution for p* W. If inertia terms are suppressed from this
equation, one recovers the classical Fick’s law, as was first established in the pioneering work
of Miiller (1968). But we stop here these comments since we are mainly interested in
non-dissipative, i.e. inertia terms.

5. THE INTERPHASE MOMENTUM EXCHANGE

The equation [38] for p* W is complemented by [50] and [52] for Rand F. Together
with [36] and [48] for T, this achieves the dynamical description of the mixture. However, in
the multiphase flow community, the variables ¥, and I_/} are far more usual than p¥ and
p* W. For this reason we now transform [38] with [50] and [52] into:

D.rl_}s DI—; PrPs 1 o - -
P*(T—é—tf)"-; (p Vp, - poVPf)—a:V(Pf—P:)
Ps -

_;(Pf_P:)V“:

S — —
_ﬂfv.[,,,(g_ h) (-3—1 - WW) + p,fWW] (54]

+ Pf(g h) ((W V) Vs - Vs) + a; a,;

3
— V . 7 + terms orthogonal to W.
What is the interphase momentum force F,,, that follows from the above result? If we
discard for a while the dissipative terms and remember that we neglected from the outset the

Reynolds stress of the solid particles, the usual way to write the averaged momentum
equation is:

—

s ls)t’ + _V. . a,? = p,?-" I—r.inter [55]
DY,
ey [f) +Vap +V. PJ<AUJA"!)! p/Z ~ Finer 561

from which one finds

00, (DV, D¥\ = ol - 1.
e — — =V p) -2 (p— p) Ve
o (Dt Dt inter P, p.r pf Pf (pf p) a
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Comparing this equation with [54] we finally arrive at the following interphase force

—

D, V DYV
Fim" = _a.rvpf - pff( Dt [f)tf) + v oD

— W2= o d N df_. . _
-V. [pfg(——3 I — WW) + pf(f—— a; daf) WW] + p/a,a-azW(v - V) (57]
Wﬁ W2 d

+ terms orthogonal to W + dissipative terms.

The first two terms on the right-hand side of [57] were expected and represent respectively
the Archimede’s force and the virtual mass force. The third and fourth terms are in the form
of a gradient and a divergence. That the interphase force should involve such terms was
already suggested by Nigmatulin (1979) on the ground of a contribution of the particles
intersected by any mesoscale volume. The dilute limit of these two terms agrees with the
single particle calculations of Nigmatulin (1978) when [29], [19] and [47] are taken into
account, thus giving some confidence in the way we got [57] for F,... The fifth to seventh
terms of [57] are new and we cannot yet propose simple physical interpretations for them. As
to the undetermined forces orthogonal to W, we do not have many possibilities, except
perhaps the Saffman’s force (1965). It must be noted thata W x (V x 17,) term was found
by Drew (1983) when forcing the interphase force to fulfill the principle of material frame
indifference or objectivity. But objectivity is a thorny matter when inertia effects are
involved (Ryskin & Rallison 1980, Bampi & Morro 1981, Lumley 1983). If we suppress all
terms orthogonal to W, then our expression of F,,. is certainly not compatible with the
objectivity principle, due to the virtual mass term. However in [38] from which we started,
both R and F were objective. So we have the feeling that with a change of variables (here the
change of ¥, and 17} into pV and p* W; also see Woods (1983) for another example) it is
always possible to have objective constitutive relations; but it must be stressed that in
contrast with the constitutive relations, the equations of evolution like [38] are definitely not
frame indifferent.

6. THE PROBLEM OF CHARACTERISTICS

Since a few years, it has been customary to examine the mathematical features of the
equations proposed to describe two-phase flows. In particular, much has been written
concerning the characteristics of these equations in connection with the well-posedness of the
two phase flow problems. Although it was shown that in some cases complex characteristics
are not incompatible with well-posedness (Bouré & Latrobe 1976, Klebanov et al. 1982) we
would be glad if our set of equations happened to have only real characteristic directions.

Eliminating the fluid pressure from [55] and [56] we get an equation involving the
velocities only, the one-dimensional form of which is (compare with Van Beek 1982):

v, v, oV, oV aW'da av, v,
<Ly Bl——E4+y = s —ew={L_o [58]
A(az * fax) (az * ‘ax)+ @ ox T T e
where
A=z(1+£)
aS
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4 d 4 df
a=§a,a——(g—h)~—§(g—h) +2f+afa,@?
—~h d
- 2“’ df— 2+ 2 - h))
a, da

Note that all the terms orthogonal to # in [57] disappear from [58] and thus play no role in
the characteristics of the equations. If we suppose for a while that the liquid is incompress-
ible, [58] will be associated with the one-dimensional continuity equations

aas a

aV, = 59
5 TV 0, [59]
aaf 6

o + 5——a,Vf 0. [60]

The characteristics of the set [58]-[60] of quasi- lmear first order differential equations are
bound to the roots » of the equation

(a4 + ayB)(v — V) + 2W(y — V,)(a,b + a (A + £))+ w? (aja+a,(A+¢)=0

2

The characteristic directions are thus all real provided:
c 2
(afb + a,(A + 5)) > (@ + o,(A + ¢)) (a,A + o4B). [61]

This is a rather complicated inequality involving f, g — 4 and their derivatives together with
p3/o? which appears in B. Let us examine it for dilute solutions. In this limit we write the
series expansions of fand g — h as:

f=k|a,+k20l_3+...
g—-h=Ka, + Ka®+

Let us first suppose that K, # 0. One then finds

a="4K, + 0(x)
b = 2K, + 0(«,)

and the condition [61] for real characteristics becomes
b > aB

or

2 .
Ki>ZKlk +5%
3 Py
This inequality is satisfied for any negative K, (and also for a sufficiently large positive value

of K;, but depending on k, and p?/p}). It is not difficult to get convinced that a negative K,
corresponds in [58] to a Ve, force in the direction opposite to the acceleration of the particles.
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This was already pointed out by Van Beek (1982) and Micaelli (1982) who observed that
whenever a < 0 in [58], the particles tend to move in the direction opposite to Va,, thus
lowering any already existing gradient of concentration, a potentially stable situation.

Unfortunately if we take the results [31] and [47] for granted we are obliged to accept
that

In this case both a and b are proportional to «, and the inequality [61] becomes:

a
A+c+—<0
aJ

or
1+k|+k2+4/3K2<0 [62]

If the value k, = 0.5 seems firmly established (cf [19]), the value of &, is still in dispute (k, is
1.5 for Zuber (1964), 1.66 for van Wijngaarden (1976b) and O for Nigmatulin (1978)) while
K, is unknown, since Nigmatulin (1978) only found:

9 3
g=55% (I —a) + 0 (),

but nothing concerning h. So, we must wait for future calculations to decide if [62] is
satisfied or not in dilute solutions.

It must be kept in mind that other physical phenomena can lead to a Vo, force and thus
can change the nature of the characteristics. One can think of a direct interaction between
the particles (Klebanov er al. 1982) but even more simply, of a configuration entropy of the
particles dispersed in the fluid. By analogy with the theory of dilute solutions (De Groot &
Mazur 1969) we can change [26] into:

kB Qs
S = PsSs + pfsj - ;'n—p.rlog a_* ’
5 s

where m, is the mass per particle, k; is the Boltzmann constant and «f = 0.6 is the upper
volume fraction of the dispersion.
As a consequence, a term like

kT
Aﬂ,='5—10g%

5 s

must be added to the particles chemical potential and then appears in F [52] the force

= kT -
—-M’-VAM,= LN N
p p 1

s

where T, is the particle volume. This diffusion force, very similar to the Brownian motion
force, acts in the “good™ direction, but it must be stressed that its structure is very different
from the inertia Va, force which involves the square of the relative velocity (cf [58]). As a
consequence the “Brownian” diffusion force can lead to real characteristics only if the
relative velocity is low enough, while the inertia diffusion force can lead to real characteris-
tics whatever is the relative velocity. In short, the *“Brownian” diffusion force is not the whole
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story and it is of utmost importance to verify if one of the inequalities K, < 0 or [62] is
satisfied.

7. CONCLUSION

The main results of this paper concern the equations of motion of a dispersed solid-fluid
mixture and they follow from a combination of:

(a) A rather usual thermodynamic approach represented by the Gibbs equation [32],
the equations of motion [34] to [38] and the entropy balance law [40]. These are completed
by [41] relating the fluxes, expression {43] for the mean pressure and expressions [29] and
[30] for the particles internal stresses.

(b) A less usual approach (based on compatibility between average and thermodynamic
equations) which allowed us to derive the non-dissipative parts of the fluxes J, S, 7, 0, Rand
also of the force F. These are given by [44], [45], [48], [49], [50] and [52]. The dissipative
parts of the fluxes are linked by [51] and they can be deduced from the entropy production
[53].

Instead of the Truesdellian rational thermodynamics transposed to multiphase mixtures
by Bedford & Drumbheller (1983) or Drew & Lahey (1979) for instance, we used here a
thermodynamic approach “a la Landau” that was first applied to superfluid helium (cf
Kalatnikov 1955 and Landau & Lifshitz 1971). At first sight these two approaches seem
very different. For instance we assumed at the outset a given expression for the Gibbs
equation and then, with the techniques of irreversible thermodynamics, we deduced the
unknown terms in the evolution equations. Galilean invariance was the only requisite and no
reference was made to the “principle of equipresence” nor to the “principle of material frame
indifference.” Despite this, when applied to the same material both approaches often led in
the past to very similar results (Germain et al. 1983). We nevertheless emphasized in this
paper some points that were perhaps not sufficiently appreciated up to now in the study of a
two-velocity mixture.

The main point is that, when dealing with inertia effects related to the relative velocity,
the best state variable is the momentum p*W ~ dU/dW and not W itself. Discarding this
internal momentum to the benefit of W is all the more surprising than with inertia linked to
rotation, everyone is accustomed to use the angular momentum dU/d€ and not € itself.
Moreover with the use of p* W as a state variable, the constitutive relations are automatically
frame-indifferent, despite the presence of “added mass effects.”

It is true that p* W and p¥ have a much less intuitive meaning than the fluid and particle
velocities, but if one prefers to deal with l_/}and V,, then a second important remark arises:
the expression of the interphase force F,,, must involve a divergence term (Nigmatulin
1979) which is responsible—together with the divergence of the particle stress—for the main
inertia contribution to the Va, force, and consequently plays a decisive role in the nature of
the characteristics. It happens that our present knowledge of the fluid velocity fluctuations
and of the particle stresses in the dilute limit, is not yet sufficient to decide if our system of
equations is hyperbolic or not.

We have also shown that [29] and [30] were a consequence of the elimination of «, and
C; as independant state variables. This is evidently valid for rigid particles only. The next
step would be to extend the present approach to spherical particles with a variable radius
(Nigmatulin 1978 and Biesheuvel & van Wijngaarden 1984 already worked in that
direction) and more generally to particles suffering an homogeneous deformation. Then we
could arrive at what could be called a two-velocity fluid with microstructure, a necessary
generalization of Eringen’s work (1968) when dealing with suspensions.
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Note: I recently received a preprint by Pr. J. A. Geurst who used a variation principle to get
the equations of a two-velocity mixture. His final equations are rather similar to ours if one
supposes that g = h whatever «, is. However, for his equations to have real characteristics,
the added mass must decrease with the void fraction and even cancel for «, = ‘. This
unsatisfactory result is linked to his assumption g = 4 and points out the importance of future
calculations of g (a,) and & («,).
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APPENDIX I

Pressure and velocity fluctuations in the motion of a particle in an ideal fluid

When introduced into a pre-existing flow V. (7, t) with pressure p, (7, 1), a particle
moving along a trajectory7,(¢) with a velocity ¥, = d7,/dt modifies the velocity and pressure
fields around it into 7, (7, t) and 5, (7, t). Let us suppose that the relative velocity in high
enough for the flow around the particle to be that of an ideal fluid with a curl-free velocity
field. Then Bernoulli’s theorem implies:

. l 6. = = = 9 0.
P/=Pw—ipfo(vf—Va)z—PyVm'(Uf—Vw)—Pfo(E-—a‘)

where ¢ and ¢, are the respective potentials of 7yand V. Denoting by () ra mean value over
a volume of fluid centered on the particle one gets the following result:

o] -
(Prvpdy = (Pp) Vs~ Ep}((vf— V.)Av,),

— — . 0 op.\ .

where
is the mean velocity and

Bvy = =V
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is the fluctuating velocity field. Moreover, any flow v, verifies:
(W), = (Vi + (AP )V, + 2V, - (AU AT,), + (AviAT,),. [A.2]

Now it happens that the flow of a spherical particle in a ideal fluid is quite symmetric (no
wake!) and consequently

One thus deduces from (A.1) and (A.2) that:

A ! 1 _ 9 06\
<(Pf +3 P?”}) ”f>j = (<Pf>f +500V7 + 507 (A )f) Vi - P})«g - _at—) Avf>f~

It is thus remarkable that most of the fluctuations which separately contribute to (v’ v) and
(p V) disappear in the above pressure and velocity combination (which is in fact the one
occurring in the fluid energy flux). Moreover, in the case of rigid particles, the perturbed
flow is always such that

dp 9, = ..
X2 V.
ot s 720

As a consequence one finally gets for rigid spherical particles in a ideal fluid:
(ﬁf)f‘—‘Pm - '/2 Pfo(AU} )_f [A.3]

and

1 - - 1 1 — = e
<(ﬁ/ + 3 p})v}) vf>f = ((pf)/ + Ep}’V} + 3 py{Av} )[)Vf + oV, - (Bv,Av),. [A.4]

The result [A.4] is rather interesting since it suggests that we need nothing more than the
“Reynolds stress” (Auv,Av;) to express the pressure-velocity correlations occurring in the
energy flux of a ideal fluid containing rigid particles. This result was used in the text to get
[49] for the energy flux of the mixture.



